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1 Epidemic Model

1.1 Phase space exploration

In Fig 1A we explore the phase space of the behavioural parameters (α, γ) of the model. We set for the
six countries R0 = 1.15, 0.5% of initially infected individuals, and 10% of immune individuals, rV = 1%,
V ES = 70% and V ESymp such that V E = 90%. After setting the initial conditions, we let the model
evolve, individually for each country, for one year exploring a grid of the parameters α and γ. This allows
us to observe the phase space of parameters regulating the behavioural transitions. In particular, for each
(α, γ) pair we compute the relative deaths difference due to vaccines and behaviour change. As stated in
the main text, the relative deaths difference is the fraction of deaths averted with respect to a baseline
without vaccine and behavioural response. For the countries of focus, we consider two different values
of the parameter r (r = 1.3, 1.5) which defines the increase in infection risk for individuals relaxing
preventive behaviours. The obtained relative deaths difference varies from a maximum of 0.86 to a
minimum of 0.49. This indicates that, in our simulations in the best scenario about 86% of deaths are
averted thanks to the vaccine rollout. However, this potential gain reduces to around 49% in the worst
case, with a potential waste of 37% of the benefit brought by the vaccine in terms of reduced mortality.
Since α and γ are the only varying parameter in these simulations, such a reduction is only attributable
to the relaxation of NPIs from the individuals. More in detail, across the different settings considered,
a common pattern emerges. For α fixed, as γ grows we observe progressively an increase in the relative
deaths difference. Indeed, if the population reacts promptly, non-compliant individuals turn back to
COVID-safe behaviours, and the fraction of averted deaths benefits from this behaviour. On contrary,
for a fixed γ an increase of α induces a stronger behavioural response causing more deaths otherwise
avoided thanks to the vaccination. Furthermore, we observe that, for a given pair of the behavioural
parameters, the fraction of averted deaths is lower when r = 1.5 with respect to r = 1.3. Indeed, in this
case non-compliant individuals expose themselves to a higher risk of infection.
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Fig 1. Impact of model parameters governing the behavioural response. For the six
countries, we explore different values of α and γ in terms of fraction of averted deaths with respect to a
baseline without vaccine and no behavioural response (i.e. rV = 0%, α, γ = 0). We consider two
different values of the parameter r (1.3 and 1.5), we set rV = 1% and V ES = 70% (V E = 90%), and we
employ vaccine strategy 1. In panel A we consider the dynamic-rate mechanism to regulate behavioural
transitions (presented in the main text), while in panel B we use the constant-rate model.
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1.2 Constant Rate Model

In the main text, we presented results only for the dynamic rate model in which the behavioural tran-
sitions are modulated by the fraction of vaccinated population and the number of deaths per 100, 000
in the previous time step. In Fig 1B, we report the behavioural parameters space exploration for a sim-
pler constant rate model, in which transitions from and towards the non-compliant compartments are
regulated by constant parameters. Over a grid of (γ, α) pairs, we explore the fraction of averted deaths
with respect to a baseline simulation without vaccine (and thus no behaviour change triggered by the
vaccination). For comparison, we display also the results for the dynamic rate model used in the main
text in Fig 1A. As expected, the overall behaviour of the model is confirmed. For a fixed γ, the fraction
of averted deaths reduces for increasing values of α, hinting that a stronger behavioural response causes
an additional reduction of the benefit brought by the vaccine. Conversely, for a fixed α, the fraction of
averted deaths increases for increasing values of γ. Indeed, in these cases non-compliant individuals turn
back faster to COVID-safe behaviour.
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1.3 R0 calculation

We compute the basic reproduction number R0 of the model proposed using the Next Generation Matrix
method [1]. For simplicity, we derive the R0 without the compartments of the vaccinated. Indeed, we
imagine that the vaccination starts after that cases have increased and thus does not affect the initial
stage of the epidemic. We consider the 4K equations that describe the evolution in time of the number
of infected individuals L, P , A, and I:

dLk
dt

=λkSk + rλkS
NC
k − εLk

dPk
dt

=εLk − ωPk
dAk
dt

=ωfPk − µAk
dIk
dt

=ω(1− f)Pk − µIk

(1)

Where λk = β
∑K
k′=1 Ckk′

Ik′+IVk′+χ(Pk′+Ak′ )

Nk′
is the force of infection for age group k. In matrix

notation: 

dL1

dt
...

dLK

dt
dP1

dt
...

dPK

dt
dA1

dt
...

dAK

dt
dI1
dt
...

dIK
dt



=



λ1S1 + rλ1S
NC
1

...
λKSK + rλKS

NC
K

0
...
0
0
...
0
0
...
0



−



εL1

...
εLK

ωP1 − εL1

...
ωPK − εLK
µA1 − ωfP1

...
µAK − ωfPK

µI1 − ω(1− f)P1

...
µIK − ω(1− f)PK



(2)



dθ1
dt
...

dθK
dt

dθK+1

dt
...

dθ2K
dt

dθ2K+1

dt
...

dθ3K
dt

dθ3K+1

dt
...

dθ4K
dt



=



F1

...
FK
0
...
0
0
...
0
0
...
0



−



V1
...
VK
VK+1

...
V2K
V2K+1

...
V3K
V3K+1

...
V4K



(3)

Then, we define the disease free equilibrium (DFE) for age group k as:

(Sk, S
NC
k , Lk, Pk, Ak, Ik, Rk) = (Nk, 0, 0, 0, 0, 0, 0) (4)

Indeed, the behavioural dynamics starts only after the beginning of the vaccination campaign. We
also assume that Rk << Nk. We define the two matrices F and V as follows: Fij = dFi

dθj

∣∣
DFE

and

Vij = dVi

dθj

∣∣
DFE

. These can be written as:
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F =



0 · · · 0 βN1C11χ
N1

· · · βN1C1Kχ
NK

βN1C11χ
N1

· · · βN1C1Kχ
NK

βN1C11

N1
· · · βN1C1K

NK

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 βNKCK1χ
N1

· · · βNKCKKχ
NK

βNKCK1χ
N1

· · · βNKCKKχ
NK

βNKCK1

N1
· · · βNKCKK

NK

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0


(5)

V =



ε · · · 0 0 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 · · · ε 0 · · · 0 0 · · · 0 0 · · · 0
−ε · · · 0 ω · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 · · · −ε 0 · · · ω 0 · · · 0 0 · · · 0
0 · · · 0 −ωf · · · 0 µ · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · −ωf 0 · · · µ 0 · · · 0
0 · · · 0 −ω(1− f) · · · 0 0 · · · 0 µ · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · −ω(1− f) 0 · · · 0 0 · · · µ



(6)

The basic reproduction number is defined as R0 = ρ(FV −1), where ρ(·) indicates the spectral radius.
First, we compute V −1. We recognize that V and F can be written in blocks as:

F =


0 χβC̃ χβC̃ βC̃
0 0 0 0
0 0 0 0
0 0 0 0

 , V =


H 0 0 0
I L 0 0
0 M N 0
0 P 0 R

 (7)

Where all the block components of V are diagonal matrices, and C̃ is the contacts matrix weighted by

the relative population in different age groups (i.e. C̃ij = Ni

Nj
Cij). The inverse of a block matrix

[
A 0
C D

]
can be written as

[
A−1 0

−D−1CA−1 D−1

]
, where in our case A =

[
H 0
I L

]
, C =

[
0 M
0 P

]
, D =

[
N 0
0 R

]
.

Therefore, we compute:

A−1 =

[
H 0
I L

]−1
=

[
H−1 0

−L−1IH−1 L−1

]
(8)

D−1 =

[
N 0
0 R

]−1
=

[
N−1 0

0 R−1

]
(9)

−D−1CA−1 = −
[
N−1 0

0 R−1

] [
0 M
0 P

] [
H−1 0

−L−1IH−1 L−1

]
= −

[
0 N−1M
0 R−1P

] [
H−1 0

−L−1IH−1 L−1

]
=

[
N−1ML−1IH−1 −N−1ML−1

R−1PL−1IH−1 −R−1PL−1
] (10)

Substituting these expressions, we can then write V −1:

V −1 =


H−1 0 0 0

L−1IH−1 L−1 0 0
N−1ML−1IH−1 −N−1ML−1 N−1 0
R−1PL−1IH−1 −R−1PL−1 0 R−1

 (11)
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The next step consists in computing the product FV −1:

FV −1 =


0 χβC̃ χβC̃ βC̃
0 0 0 0
0 0 0 0
0 0 0 0




H−1 0 0 0
L−1IH−1 L−1 0 0

N−1ML−1IH−1 −N−1ML−1 N−1 0
R−1PL−1IH−1 −R−1PL−1 0 R−1



= βC̃


(−χ1 + χN−1M +R−1P )L−1IH−1 χL−1 − χN−1ML−1 −R−1PL−1 χN−1 R−1

0 0 0 0
0 0 0 0
0 0 0 0


(12)

Finally, we are left with finding the spectral radius of FV −1 (i.e., its largest eigenvalue). The eigenvalue
problem can be written as det(FV −1−λ1) = 0. Given the structure of FV −1, and since we are interested
in non-trivial solutions (λ 6= 0), the problem reduces to:

det[βC̃(−χ1 + χN−1M +R−1P )L−1IH−1 − λ1] = 0 (13)

Since N , M , R, P , L, I, and H are all diagonal we easily compute the inverses and products and simplify
the expression to:

det

[
β

(
χ

ω
+
fχ

µ
+

1− f
µ

)
C̃ − λ1

]
= 0 (14)

Therefore, finding the spectral radius of FV −1 is equivalent to solving the eigenvalue problem for

β
(
χ
ω + fχ

µ + 1−f
µ

)
C̃ and taking the largest eigenvalue. Finally, we have thatR0 = β

(
χ
ω + fχ

µ + 1−f
µ

)
ρ(C̃)
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1.4 Vaccine Efficacy

In the main text we let vary the rollout speed rV and kept fixed the vaccine efficacy. Here, we repeat
part of the analyses varying also their effectiveness. More in detail, we consider three vaccine efficacy
V E = 50%, 70%, 90%. We set the related V ES = 30%, 50%, 70%, and we adjust accordingly the V ESymp
using the formula V E = 1− (1− V ES)(1− V ESymp). For these values, we represent the relative deaths
difference as function of α for the six countries and the three prioritization strategies. Results are reported
in Fig 2. As expected, a higher V E leads to a higher fraction of averted deaths. In the case of Italy,
when α = 0 and vaccination strategy 1 is employed, 55% of deaths are avoided when V E = 90%, 44%
when V E = 70%, and 33% when V E = 50%. When we switch on behavioural response (i.e., α > 0),
we observe similar patterns of the main text. Indeed, lower vaccine efficacy are more impacted by the
relaxation of NPIs. As an example, in the case of Ukraine and vaccination strategy 1, when V E = 90%
the fraction of averted deaths goes from 0.57 with α = 0 to −0.20 with α = 10, with a potential drop of
0.77. When instead V E = 50% these figures drop to 0.37 (α = 0) and −1.08 (α = 10), with an increased
drop of 1.45.
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Fig 2. Relative deaths difference for different vaccine efficacy and prioritization
strategies. Relative deaths difference is computed as the fraction of deaths that are avoided with a
vaccine with respect to a baseline simulation without vaccine. We display results of the simulations for
three vaccine efficacy and prioritization strategies. Other parameters used are γ = 0.5, R0 = 1.15,
r = 1.3, rV = 0.25%, V ES = 70% and V ESymp such that V E = 90%, 0.5% of initially infected, 10% of
initially immune individuals, and simulations length is set to 1 year.
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1.5 Comparison of vaccination strategies

In the main text, we considered the number of deaths as a primary endpoint to evaluate the efficacy of
behaviour and vaccine. In Fig 3 we compare the different vaccination strategies both in terms of averted
deaths and averted infections. We set α = 0, therefore we do not consider behaviour change. We ob-
serve that the strategy prioritizing the elderly (i.e., strategy 1), is actually the most efficient in reducing
the number of deaths across the different population pyramids and contact patterns considered. The
strategy prioritizing age groups 20− 49 (i.e., strategy 3) is the best one in reducing infections for Serbia,
Ukraine, Canada, and Italy. In the case of Egypt and Peru, while strategy 3 is preferable to strategy 1
when considering the fraction of averted infections, the most efficient one in this case is the strategy that
targets homogeneously the population (i.e., strategy 2). This may be due to the high contacts activity of
individuals aged under 20, who are partly vaccinated since the beginning of the campaign when strategy
2 is employed.

In Fig 4, we repeat the analysis presented in the main text considering the relative infections difference
instead of the relative deaths difference as an endpoint to evaluate the effects of vaccines and behaviour
on the spreading. By relative infections difference, we simply intend the fraction of averted infections
in the presence of a vaccine with respect to baseline without vaccine. We consider the three vaccine
prioritization strategies, the three rollout speed, rV = 0.1%, 0.5%, 1%, and different intensity of the
behavioural responses by exploring a range of α values. We observe that the most efficient strategies
at reducing the number of infections are strategy 3 (for Serbia, Ukraine, Canada, and Italy) and 2 (for
Egypt and Peru). Across the different countries, we observe that strategy 1 is generally the worst one
in terms of averted infections and it is also more affected by stronger behavioural responses.
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Fig 3. Comparison of different vaccination strategies. We compare the three vaccination
strategies considered in terms of averted deaths and averted infections when α = 0 with respect to a
baseline without vaccine. Stars indicate best strategy. We set γ = 0.5, R0 = 1.15, r = 1.3, rV = 0.5%,
V ES = 70% (V E = 90%), 0.5% of initially infected, 10% of initially immune individuals, and
simulations length is set to 1 year.
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Fig 4. Relative infections difference for different rollout speed and prioritization
strategies. Relative infections difference is computed as the fraction of infections that are avoided
with a vaccine with respect to a baseline simulation without vaccine (and thus no behavioural
response). We display results of the simulations for three vaccine efficacy and prioritization strategies.
Other parameters used are γ = 0.5, R0 = 1.15, r = 1.3, V ES = 70% (V E = 90%), 0.5% of initially
infected, 10% of initially immune individuals, and simulations length is set to 1 year.
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1.6 Vaccine Hesitancy

In the main text we assumed that all individuals are willing to receive the vaccine. This is an optimistic
assumption, since some may decide not to get vaccinated. As noted previously, vaccine adoption is
complex, and may depend on a range of individual factors [2]. As a sensitivity check here, we extend our
modeling framework to account also for vaccine hesitancy. In Fig 5 we show the relative deaths difference
for the six countries as function of α for three different values of percentage of the population refusing
the vaccine: 0% (i.e., 100% uptake), 20% (i.e., 80% uptake), and 40% (i.e., 60% uptake). As expected, an
higher fraction of the population refusing to get a vaccine results in worse outcomes measured in terms of
averted deaths. In the case of Peru, when everyone gets vaccinated and α = 0, 55% of deaths are averted
with respect to a baseline without vaccines. This figure lowers to 52% and 48% when, respectively, 20%
and 40% of the population decide not to get vaccinated. More interestingly, when behaviour relaxation
comes into play, much wider differences are observed. Following the previous example, when α = 10,
with no vaccine hesitancy the relative deaths difference is equal to 0.09, to −0.06 with 20% and to −0.20
with 40% hesitancy.
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Fig 5. Relative deaths difference for different vaccine hesitancy. We represent for the different
countries the relative deaths difference as function of α for three values of vaccine hesitancy (i.e.,
percentage of the population not willing the receive a vaccine). We consider vaccination strategy 1
aimed at reducing severity. We set R0 = 1.15, rV = 0.25%, V ES = 70% (V E = 90%), γ = 0.5, 0.5% of
initially infected, 10% of initially immune individuals, and simulations length is set to 1 year.
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1.7 Demographic

In this section we provide additional information about the demographic of the different countries studied.
In Fig 6 we show, for each country, the four layers of the contacts matrix (school, work, home, other
locations). We observe how the developing economies (i.e., Egypt, Peru) and the economies in transitions
(i.e., Ukraine) show a higher number of daily contacts. In Fig 7 we plot instead the fraction of people
in different age groups for the six countries. As mentioned in the main text, Egypt and Peru feature a
much younger population, while Italy is the country with the highest fraction of people in the 75+ age
group.

Finally, we further investigate the interplay among contacts patterns, demographic pyramids and
behaviour change in Fig 8. For simplicity, we consider only Egypt and Italy. They are two very dissimilar
countries in terms of demographics. Indeed, as noted previously, Egypt has a younger population, higher
number of contacts, and higher inter-generational mixing. For both countries we run a simulation with
vaccine rollout followed by a possible relaxation of NPIs (α = 10) and one with vaccines allocation only
(α = 0). We then compare the number of daily deaths per 100′000 in the two simulations. In Fig 8 we
see clearly that, in both simulations more deaths occur in Italy. Notice how we kept for visualization
purposes two different scale of the y-axis. Indeed, at the peak nearly 5 deaths per 100′000 are counted
daily for Italy, while, in the worst case, less than 0.5 are observed in Egypt. This result is expected: the
older population and the strong dependence of COVID-19 infection fatality rate from age makes Italy
more fragile to the spreading. Nonetheless, we observe an interesting finding. As noted in the main text,
we see that, in relative terms, behavioural response has a bigger impact in the case of Egypt. Indeed,
switching on the behavioural response results in around 29% more deaths for Italy. In the case of Egypt
this figure is more than doubled: about 59% deaths increase is observed when behavioural change comes
into play. This comparison underlines once more the impact of socio-demographics on the behavioural
dynamics and shows in more detail how a younger, more active, and more mixed population is more
exposed to the risk of COVID-safe behaviour relaxation.
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Fig 6. Contacts Matrices.
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Fig 8. Effects of behaviour change: comparison between Italy and Egypt. We display daily
deaths for 100′000 for Italy and Egypt in the case of a simulation with possible behaviour relaxation
(α = 10), and one without (α = 0). In both cases we set: R0 = 2.0, rV = 0.25%, V ES = 70%
(V E = 90%), γ = 0.5, r = 1.3, and we employ the vaccination strategy aimed at reducing severity
(strategy 1).
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2 Behavioural Parameters

In this section, we provide additional insights on the role and the interpretation of the behavioural
parameters, as well as sensitivity analyses on the values used in the main text.

2.1 Behavioural Parameters: α and γ

To analyse in depth the role of α and γ in Fig 9 we plot the rates of the behavioural transitions for
several combination of the parameters. In panel A we show the rate of the transition from compliance
to non-compliance g(α) = 1− e−αvt as function of the fraction of the population vaccinated vt and for a
spectrum of values of α. As expected, the rates are bounded between 0 and 1 and, across the different
α, g(α) show an increasing trend. Indeed, the higher the fraction of population vaccinated, the more
probable is the transition to non-compliance. For increasing values of α, the function g(α) grows faster
and approaches the maximum value 1 for lower values of vt. As an example, when vt = 0.2, the transition
rate g(α) is equal to 0.02, when α = 0.1, to 0.33 when α = 2, and to 0.86 when α = 10. For extreme
values such as α = 100, the growth of g(α) is virtually instantaneous, and the transition rate approaches
1 for very low values of vt. This extreme case represent a collective, strong, response to the vaccine
rollout in which individuals massively give up COVID-safe behaviours as soon as the vaccination start.
To further understand the effect of different α, we plot as a dashed horizontal line the reference value of
g(α) = 0.5: we observe that in general for α < 1 the transition probability is smaller than 50% when the
whole population is vaccinated (i.e., vt = 1). In panel B, we repeat the same analysis for the rate of the
transition from non-compliance to compliance h(γ) = 1−e−γdot . We study it as a function of the number
of observed daily deaths per 100′000 dot and for several values of γ. We use values of dot between 0 and
5. As a reference, in the worst day of the Pandemic so far Italy reported about 1.6 deaths per 100′000.
The observations made previously hold also in this case: the transition rate shows an increasing trend
as function of dot and for increasing values of γ the growth of the function h(γ) becomes steeper.

In Fig 10 we show, for different values of α and R0, the temporal evolution of the fraction of non-
compliant individuals (SNC+V NC), together with the fraction of vaccinated population and the number
of daily deaths per 100′000. We observe that, for higher values of α, the fraction of non-compliant grows
faster. In parallel, since a stronger relaxation of NPIs leads to a larger number of infections, we also
observe more deaths and less vaccinated. More in detail, especially when α = 1, 10, we observe that after
reaching a peak, the fraction of non-compliant decreases. The reason is that, following the relaxation of
NPIs from a group of individuals, the number of deaths increases and as result individuals go back to
safer behaviours. This can be easily seen by comparing the peak of number of deaths per 100′000 (last
row) and the local minimum in the fraction of non-compliant (first row) around t = 80. For higher t, the
fraction of non-compliant reaches a plateau: indeed, when the number of infected goes to zero, all S and
V individuals left transition to the non-compliant compartments. Interestingly, for α = 0.1, the final
fraction of non-compliant is higher. The reason is that, thanks to a milder relaxation of COVID-safe
behaviours, less people get infected and therefore more move to non-compliance when the number of
infected goes to zero. Finally, when R0 is higher we observe less individuals becoming non-compliant.
Indeed, more deaths occur because of the higher transmissibility, and as result individuals are less likely
to abandon COVID-safe behaviours.
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Fig 9. Behavioural transitions rates. We represent the rates of the behavioural transitions for
different parameters. A) Rate of the transition from compliance to non-compliance (g(α)) as a function
of the fraction of the population vaccinated (vt) for different values of α. B) Rate of the transition from
non-compliance to compliance (h(γ)) as a function of observed daily deaths per 100′000 (dot ) for
different values of γ. The horizontal dashed line is placed at 0.5.
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Fig 10. Fraction of non-compliant individuals in time. We represent the fraction of
non-compliant individuals over time for different values of α and epidemiological conditions
(R0 = 1.15, 1.5, 2.0). We also represent the factors regulating the behavioural transitions, namely the
fraction of vaccinated individuals in time and the number of daily observed deaths per 100′000. We
consider the population pyramid and contacts patterns of Italy, a vaccination strategy targeting the
population homogeneously, and we set V ES = 70% (V E = 90%), rV = 0.25%, γ = 0.5, r = 1.3, 10% of
initially recovered and 0.5% initially infected individuals.
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2.2 Sensitivity analysis: r

In the main text we run the simulations considering r = 1.3. This parameter describes the increased risk
of infection that non-compliant individuals (SNC and V NC) face when giving up COVID-safe behaviours.
In the main text we justified the choice r = 1.3 considering the estimated effects of NPIs such as mask
wearing and social distancing on COVID-19 spreading [3, 4, 5, 6]. Here, we run a sensitivity analysis to
this choice in Fig 11. We display, for the six different countries of focus, the relative deaths difference as
function of α for three values of r (1.1, 1.3, 1.5). We consider vaccination strategy 1 (aimed at reducing
severity), rV = 1%, and V ES = 70% (V E = 90%). Overall, we observe that the patterns observed
in the main text hold when changing r. Indeed, when α > 0, the fraction of averted deaths, thanks
to the vaccines diminishes. As expected, lower values of r imply smaller impact on the relative deaths
difference. In the case of Italy, for example, when α = 10, 75% of deaths are averted in the case of
r = 1.1, 64% when r = 1.3, and finally 48% when r = 1.5.
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Fig 11. Relative deaths difference for different r. We represent for the different countries the
relative deaths difference as function of α for three values of the behavioural parameter r
(r = 1.1, 1.2, 1.3). We consider vaccination strategy 1 aimed at reducing severity. We set R0 = 1.15,
rV = 1%, V ES = 70% (V E = 90%), γ = 0.5, 0.5% of initially infected, 10% of initially immune
individuals, and simulations length is set to 1 year.
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2.3 Sensitivity analysis: γ

In the main text we generally kept constant the behavioural parameter γ (γ = 0.5) and we let vary the
other parameter α. We informed the choice of γ looking at the maximum number of COVID-19 deaths
observed on a single day in the different countries. In the case of Italy, for example, γ = 0.5 would
have implied a 60% probability for non-compliant to go back to safer behaviours with 1000 deaths in
the previous step. Here, we report results obtained for different values of γ. We consider two additional
values, γ = 0.05 and γ = 2, which in the previous example would imply, respectively, a return probability
of 10% and 95%. In Fig 12 we compare, for each country, the relative deaths difference for the three
values of γ (0.05, 0.5, 2). We observe that, while the decreasing trend is common across the different γ
considered, curves for higher values of γ are shifted upwards. In other words, when γ grows the fraction
of averted deaths increases. This is expected: indeed, a higher γ implies greater awareness to deaths
increase, and thus individuals go back to safer behaviours faster.
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Fig 12. Relative deaths difference for different γ. We represent for the different countries the
relative deaths difference for three values of the behavioural parameter γ (γ = 0.05, 0.5, 2). We consider
vaccination strategies prioritizing age groups 20− 49. We set R0 = 1.15, r = 1.5, rV = 1%, V ES = 70%
(V E = 90%), 0.5% of initially infected, 10% of initially immune individuals, and simulations length is
set to 1 year.
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2.4 Double Behavioural Rate Model: αS and αV

S and V individuals may give up COVID-safe behaviours for different reasons and as result show different
behavioural rates. In the main text, however, to avoid complicating further the model, we assumed that
S and V individuals can transit to non-compliance (and back) at the same rates, α and γ. Here, we
extend the modeling framework to account for heterogeneous behavioural rates. We introduce αS and γS
for susceptibles and αV and γV for vaccinated. In Fig 13 we explore the phase space of the behavioural
parameters (αS , αV ) in terms of relative deaths difference with respect to a baseline without vaccine and
no behaviour response. For simplicity we keep γS , γV = 0.5. We consider two vaccine efficacy V E = 50%
(V ES = 30%) and V E = 90% (V E = 70%). In general, we observe that the relative deaths difference is
more influenced by αS rather than αV . Indeed, thanks to the protection guaranteed by the vaccine, the
behaviour relaxation of V individuals leads to less infections with respect to a similar reaction from S.
This become less evident when lower vaccine efficacy are considered. Indeed, a lower protection expose
V individuals to an infection risk which becomes increasingly more comparable to that of S.
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Fig 13. Impact of behavioural parameters αS and αV governing the behavioural response.
For the six countries, we explore different values of αS and αV in terms of fraction of averted deaths
with respect to a baseline without vaccine and no behavioural response. For simplicity we keep
γS , γV = 0.5. We consider two different values of the vaccine efficacy V E = 50% (V ES = 30%) and
V E = 90% (V E = 70%) and we employ vaccination strategy 1. We set R0 = 1.15, r = 1.3, rV = 1%,
0.5% of initially infected, 10% of initially immune individuals, and simulations length is set to 1 year.
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3 Calibrated Model

3.1 Posterior Distributions

In Fig 14 we plot, for the different countries, the posterior distributions of the parameters calibrated
through the Approximate Bayesian Computation rejection algorithm. In particular, we display the
posterior distribution for the transmission parameter β, the initial number of infected individuals per
100, 000 individuals (split between the L, P , I, and A compartments), and the delay in deaths ∆ (i.e.,
the number of days between the transitions RI → D and D → Do).
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Fig 14. Posterior Distributions. We represent with boxplots the posterior distribution of the
calibrated parameters for the different countries. Solid vertical lines indicate the median. The bounds
of the darker shaded area indicate the first and third quartile, Q1, Q3. Their difference is defined as
interquartile range IQR = Q3−Q1. The bounds of the lighter shaded area indicate the ”minimum”
and the ”maximum”, defined respectively as Q1− 1.5IQR and Q3 + 1.5IQR.
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3.2 Robustness of Vaccination Strategies to Behavioural Change

In the main text we introduced the quantity ∆RDD(α) = RDD(α) − RDD(0). This represents the
fraction of averted deaths that are lost because of behaviour relaxation. An analogous quantity can be
computed for infections (∆RID). We use this metrics in Fig 15 to compare, for the calibrated model, the
different strategies in terms of robustness to behaviour change. We observe that strategy 1, aimed at
reducing severity, is always the more robust to NPIs relaxation when considering averted deaths. When
considering averted infections, instead, strategy 2 (homogeneous) and 3 (aimed at reducing transmission)
are generally preferable, with the exception of Canada, where also in this case strategy 1 is slightly more
robust.
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Fig 15. Comparison of different vaccination strategies in terms of robustness to behaviour
change. We compare the three vaccination strategies considered in terms of robustness to COVID-safe
behaviours relaxation considering both averted deaths and averted infections. Stars indicate best
strategy. We set γ = 0.5, R0 = 1.15, r = 1.3, rV = 0.5%, V ES = 70% (V E = 90%), 0.5% of initially
infected, 10% of initially immune individuals, and simulations length is set to 1 year.
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3.3 Real Vaccination Rollout

Here, we extend the results presented in the main text for the calibrated model integrating also real data
from an ongoing vaccination campaign. Because of data availability at the moment of writing, for this
analysis, we will focus only on the case of Italy. For the sake of simplicity and to match the available data
with the modeling framework presented in this work, we consider only first doses administered daily to
individuals in the different age brackets from Ref. [7]. In doing so, we have a data-driven, time-varying
estimate of the vaccine rollout speed rV and of the prioritization strategy. At the bottom of Fig 16 we
show the evolution in the first six months of 2021 of the cumulative percentage of people who received
at least one dose. During this period, Italy managed to deliver at least one dose to roughly 40% of the
population. In the figure, we also show the distribution of doses among the different age groups. Around
91% of the population aged over 75 received at least one dose, but we observe high percentages also in
younger groups (for example around 70% in the population aged 60− 75.)

We consider the same calibration step presented in the main text which takes into account real
epidemiological and mobility from Ref. [8, 9] during the period 2020/09/01−2020/12/31 to set the values
of the free parameters of the model. After the calibration, we simulate the unfolding of the epidemic,
of the restrictions, and of the vaccination campaign using the real rollout data between 2021/01/01 and
2021/06/01. At the top of Fig 16, we plot the relative deaths difference for a spectrum of α values and
for two values of the parameter r capturing the increased risk of non-compliant individuals. Also, when
considering real data on the rollout progression, our findings are qualitatively similar to those obtained
in the main text. Indeed, we observe that, while with an α = 0 the fraction of averted deaths is about
18%, this fraction lowers and turns negative for higher values of α. As expected, the higher value of r
leads to worse outcomes.
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3.4 Reopening Scenarios

In the main text, we used the Google Mobility Report [8] and the Oxford Coronavirus Government
Response Tracker [9] to inform contacts reduction over time up to week 11, 2021. Afterwards, we kept
contacts at the level observed for week 11.

Here, we propose a different reopening scenario in which we use the real mobility and policy data for
the whole simulation period (2021/01/01 - 2021/06/01).

We repeat the analysis presented in the main text with this new setting for contacts reduction and
we display results in Fig 17. In panel A, we observe that after week 11 (indicated with a vertical black
line) contacts follow different patterns across the countries under study. Overall, we observe a partial
ease of the measures since May 2021. In panel B, we report the quantity ∆RDD (i.e., additional fraction
of deaths occurred because of behaviour change) for the three vaccination strategies and the two rollout
speeds using the new contacts reduction parameters in the simulations. We observe similar trends to
those obtained in the main text. The faster rollout is indeed much more robust to COVID-safe behaviours
relaxation. With the slower rollout, on the other hand, much more deaths that would have been averted
thanks to the vaccine, occur because of low compliance to NPIs. Similarly to the results of the main
text, we see that Egypt and Ukraine are particularly affected, even though the comparison between
countries is more difficult since we are letting vary the contacts reduction parameters over longer period
of 6 months.
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Fig 17. Giving up NPIs during rollout may nullify the benefits brought by the vaccine -
Mobility and Policy data up to 2021/06/01. A) We display for the different countries the ratio
between the leading eigenvalue of the contacts matrix considering restrictions and of the baseline
contacts matrix with no restrictions. B) We display the median relative deaths difference for the
calibrated model in the different countries. We consider the three vaccination strategies and two
possible rollout speed: rV = 1% (faster rollout), and rV = 0.25% (slower rollout). We run the model
over the period 2021/01/01-2021/06/01. Other parameters are γ = 0.5, r = 1.3, V ES = 70%
(V E = 90%).
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